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Interest in the relationship between socioeco- 
nomic and demographic change has developed be- 
cause of the widespread attention given the 
theory of demographic transition (Thompson, 1929, 

1944; Notestein, 1945). Briefly, the theory 
states that there are three stages in the his- 

tory of a population: (1) the population is sta- 
ble and a regime of high birth and death rates 
prevails, (2) the population undergoes a transi- 
tion in which death rates decline followed by a 

decline in fertility, and (3) the population 
reaches a fairly stable state which is charac- 
terized by low birth and death rates. The rela- 

tionship between socioeconomic and demographic 
change becomes most important at the second or 

transitional stage of development. It has been 

suggested that technology to control mortality 
is applied more ubiquitously and rapidly under 
conditions of high urbanization and industriali- 

zation. This, in connection with the high fer- 

tility rates, causes rapid population growth. 

Fertility responds with a downward trend, accord- 

ing to speculation, because high fertility handi- 

caps the population "in their effort to take ad- 

vantage of the opportunities being provided by 

the emerging economy" (Davis, 1963: 352). 
Students of population dynamics are quick to 

point out that the theory of demographic transi- 

tion initially was simply an empirical generali- 

zation with no real rationale (Gutman, 1960). 

However, in more recent work we find several 
schemes which attempt to provide rationales for 

the observations. For example, Cowgill begins 

with the Malthusian supposition that a population 

will grow at a geometric rate until it approaches 
a size which begins to affect resource and space 

availability. He believes that most populations 
"at any given time" have reached this point and 

have achieved "a condition of equilibrium char- 
acterized by a relatively stationary population" 
(1963: 271). His refinement of transition theory 
is contained in the assertion that technological 
advances increase the "carrying capacity of the 

environment" (presumably a function of resource 
and space availability) which leads to a period 
of population increase. He explicitly states: 

"Under conditions of industrialization, 
given the technology of birth and death con- 

trol, there is a marked tendency for the 
technology of death control to be applied 
earlier and more extensively resulting in 
rapid population growth ." (p. 272). 
Generally congruent with Cowgill's propositions 

is the theory of economic and demographic inter- 
dependence developed by Frederiksen (1969). His 
model posits complex interaction among variables 
such as technological and socioeconomic develop- 
ment, production, "levels of nutrition, sanita- 
tion, health services, etc.," mortality, and 
fertility. With considerable simplification his 

theory can be stated as follows. With increasing 
technological development comes increasing health 
care distribution and implementation which causes 
a decrease in mortality. Decreased mortality 
helps decrease fertility by increasing survival 
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probabilities of offspring and thereby decreasing 
the need for large families. This model views a 

decline in mortality, therefore, not as a cause 
of the population problem but as a necessary fac- 
tor for the solution of it. 

On the basis of these two important theoretical 
contributions we can identify one major factor 
which should be included in an explanation of 
changes in fertility. Urbanization brings about 

changes which are more conducive to mortality de- 
cline which can lead to a reduction of fertility. 
Therefore, at the most general level, one might 
expect urbanization and fertility to be inversely 
related. 

A second set of factors which should theoreti- 

cally influence fertility is derived from econo- 
mic theories of fertility behavior. Generally, 

these variables influence fertility through mechan- 
isms regulated by opportunity costs (Gronau, 1973; 

Mincer, 1963). It is thought that as the social 

status of women increases (in terms of education, 
economic earning power, and so forth) the costs of 

having children increases. That is, having child- 

ren removes the opportunity to earn more money, or 

in some way other than raising children, to make 

use of the woman's time. Thus, variables related 
to the social and economic position of womeñ in a 

society become an important factor in the analysis 
of fertility. 

Unfortunately, data related to the employment of 

women of the form required for this study (long 

time series data) were unavailable. Therefore, it 

was decided to use a proxy which was though to be 
indicative of overall opportunity costs -- unemploy- 
ment. It was hypothesized that as unemployment in- 

creased, opportunity costs associated with having 
children would decrease. As opportunity costs de- 

crease, fertility should increase; so a direct re- 
lationship between unemployment and fertility was 
expected. 

A third factor assumed to be affecting fertility 
was religious composition of a population. Heer 
and Boynton (1970) found that the second highest 
correlation in their study of data for counties in 

the United States was between fertility and the 
proportion of Roman Catholics in the diocese or 
archdiocese in which the county was located. Al- 
though the reproductive ideals and behavior of 
Roman Catholics seems to be changing it was thought 
that, particularly for the time period which the 
data for this study covers -- 1919 to 1967 -- an 
important variable to include in the analysis was 
the percentage of the population who were Roman 
Catholic. A direct relationship between the per- 
centage of Roman Catholics in the population and 
fertility was expected. 

PROCEDURE 
Considerable effort has been devoted to the 

study of the effects of socioeconomic change on 
fertility. Previously, most studies have used 
cross -sectional data and various forms of regres- 
sion analysis. Although this has the merits of 

data availability (at least more so than the time 

series data that will be used here) and extensive 
technical development, the cross -sectional approach 



is inadequate for two reasons. First, in order to 
make inferences concerning developmental processes 
it is necessary to infer a developmental dimension 
into the cross -sectional data or as Goldscheider 
(1971: 85) puts it, one must exercise an "evolu- 
tionary bias ". He notes, 

"The foundation of prediction and control . 

assumes that currently nonmodern nations will 
follow similar patterns of development experi- 
enced by currently modern nations, and that 
specific relationships between social, econo- 
mic, political, and cultural variables on one 
hand and population variables on the other will 
be the same in the modernization process of 
developing societies as they were in the his- 

torical experience of developed societies." 
The present study avoids this problem by examining 
the development of a single country as that devel- 
opment is reflected in historical time series. 
That is, the time dimension is considered expli- 
citly and no time dependent variable need be in 

ferred into the data or the results of the analysis. 
Second, regression analysis requires a rather 

strict parametric structure. Heise (1969) calls 
this the problem of specification. The procedures 
used here to estimate models of fertility circum- 
vents the specification problem at least to a 
degree. Also, depending on data collection pro- 
cedures, the lag structure of a regression model 
can be restricted. For example, if data on di- 
vorces and marriages were collected from a number 
of "most recent censuses" the regression model 
which would result would relate the variables at 
only one point in time. This is clearly unrealis- 
tic since one would logically expect divorce rates 
to rise a certain number of years after an in -. 

crease in marriages. In other words, divorces 
should lag marriages and a model of the relation- 
ship between these variables should reflect this. 
Even more realistically, since "length of marriage 
to divorce" is distributed over a number of years 
one should expect an increase in marriages in 
year x to cause an increase in divorces in years 
x, x +l, x +2, .. . A model to describe this rela- 

tionship is called a distributed lag model. In 

fact, Carlsson (1970) has demonstrated the utility 
of the distributed lag concept with his model of 
the relationship between fertility and marriages 
in nineteenth century Sweden. 

In this study, time series data for the United 
States is used and spectral analysis is employed 
to estimate a distributed lag relationship be- 
tween fertility on the one hand, and urbanization, 
unemployment, and Roman Catholic population on the 

other. Yearly data on each of the variables was 
collected from published sources. Urbanization 
was measured by the complement of the farm popu- 
lation which has been estimated annually by the 
U.S. Department of Agriculture. Estimates of the 
proportion of the population belonging to the Ro- 
man Catholic church were obtained from series H- 
538 of the Historical Statistics of the United 
States (Washington, D.t.: Government 

1960; continuation, 1965) and various 
issues of the Statistical Abstract of the United 
States. Unemployment was taken from series 
of t e Historical Statistics and issues of the 
Statistical Abstracts. 

Births per 1,000 women aged 15 -44 years (cgm- 

197 

puted by summing birth rates by age of mother in 
five year age groups multiplied by five) was chosen 
as the dependent variable. Estimates of this vari- 
able are available on a yearly basis since 1909 
from the Bureau of Vital Statistics. This indicator 
of fertility has the advantage over other measures 
(e.g., the crude birth rate) that an adjustment has 
been made for age composition. This is beneficial 
since there is an interaction between fertility and 
a population's age distribution. 

The use of spectral analysis to estimate distri- 
buted lag models is reviewed in detail in other 
sources (Jenkins and Watts, 1968; Fishman, 1969; 
Hannan, 1963, 1965, 1967; Mayer and Arney, 1974). 
Due to space limitations it will be reviewed here 
with considerable brevity. 

If we assume that a discrete .time series {x }is 
related to the series then a distributed Tag 
relating the two has the form 

(1) = hi xt 
i -0 

In order to estimate the collection of constants 
{h } we must first make an assumption about and 
plce certain restrictions on the series {x,} and 

} {y . First, it must be assumed that the series 
art realizations of discrete stochastic processes 
{X } and-{Yd. Second, in order to use spectral 
analysis tha underlying stochastic processes must 
be covariance stationary. That is, the covariance 
structure of the processes must not be dependent 
on the ordering variable, t, which is usually taken 
to be time. 

Under the above restrictions equation 1 can be 

considered to be a representation of the system 
which linearly relates the discrete covariance sta- 
tionary processes {Xt} and as 

(2) Yt hi + . 

i =0 

The Z in equation 2 are terms of a discrete white 
noisetprocess. That is, {Z,1 is a discrete sto- 
chastic process in which all terms are independent 
of one another and each of the terms has the same 
distribution. The set of constants {hi} is called 
the impulse response function of the system. The 
problem becomes one of solving equation 2 for the 
impulse response functfion {hi}. 

A theorem due to the mathématician Norbert Wei- 
ner provides an initial step toward the solution 
of this problem. The Weiner -Hopf theorem states 
that the impulse response function in equation 2 
which minimizes the mean square error of the linear 
prediction must also satisfy the relation 

(3) =i 

where the y and y are the autocovariance func- 
tion of {X xand th'cross- covariance function of 
{X and {t }, respectively. Using equation 3 and 
spectral fuftctions it will be possible to solve for 
{hi 

The spectrum of the process {4}, denoted (f), 

is the Fourier transform of the afttocovariancexfunc- 
tion of (X0. Similarly, the cross -spectrum of the 
processes TX and 

{Yt 
denoted r (f), is the 

Fourier trap form of the cross -covariance function 
of {Xt} and {Yt If we let H(f) be the Fourier 



transform of the impulse response function then, 
due to the mathematical nature of Fourier tràns- 
forms the frequency domain representation of 
equation 3 is 

(4) rxy(f) = H(f) rxx(f). 

H(f) is called the frequency response function of 

the system. Equation 4 can now be solved for H(f) 
by 

r (f) 

(5) H(f) - . 

rxx(f) 

Since H(f) is the Fourier transform of the impulse 

response function, {h. }, the impulse response 
function can be found'by taking the inverse trans- 
form of H(f). 

A system with multiple inputs {X k = 1, 2, 

...n }and a single output {Xn +1,t} repre- 

sented by 

n 
(6) Xn 

+l,t =1 =0 hk,i Xk,t -i + 

Following reasoning similar to that for the bivar- 

iate can it can be shown that if G +1(f) is a 

vector of cross -spectra between each input and 

the output series, G (f) is a square matrix of 

spectra and cross- spbetra among all the inputs, 

and H is a vector of partial frequency 
response functions, then 

(7) Hn +l(f) = Gn +1(f) G-1(f) 

provided the inverse of G (f) exists. The par- 

tial impulse response functions 
{hk 

k = 1, 2, 

n} can be found by taking the ?verse Fourier 

transforms of the series of vectors H (f). 

There are two major adjustments ofnthe data 

which must be made before spectral analysis can 
be used to estimate the coefficients in a model 

like equation 6. The data must be filtered to 
approximate covariance stationarity and then the 
independent series must be aligned with the depen- 
dent series to avoid biasing the spectral func- 

tions. 
Generally, a first or second difference filter 

is sufficient to remove severe non -stationary 
components of a time series. A first order dif- 
ference filter has the form 

(8) - xt-1 

where {x is the filtered series, and a second 
differene filter is merely the result of apply- 
ing a first difference filter twice 

(9) = (xt - xt -1) - (xt -1 - xt -2) 

= xt - 2xt 
-1 + xt -2 

These two filters can be thought . of as the discrete 
analogs of derivatives. A second difference fil- 
ter was necessary to achieve approximate covari- 
ance stationarity in the fertility and Roman Cath- 
olic population series. The non -stationarity 
evident in the urbanization and unemployment series 
was reduced by a first difference filter. The 
criterion used to judge approximate stationarity 
was a noticable reduction in the low frequency 
variation of the series as shown by the spectrum 
of the filtered series. 
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After filtering the data one must align the 
filtered independent series with the filtered de- 
pendent series. This is a requirement of cross - 
spectral analysis, but it also allows one to at 
least make an "educated guess" about the structure 
of the system with which one is working. That is, 
alignment requires the specification of a lead or 
lag relationship between two series. 

It will be recalled that in order to estimate 
the cross- spectrum of two processes the cross -co- 
variance function must be estimated first. The 
estimate of the cross -covariance function used in 

this paper is 
n -u 

=(10) = (xi - x) +u - 
=1 

where and Fare the sample means of the series 
{x,} and {y,} respectively. The cross -covariance 
function will peak at a value of u, u', where the 
covariance between one series and the other series 
shifted u' units is greatest. If the series are 

not aligned, i.e., adjusted so that the greatest 
covariance occurs at zero lags, the estimated 
spectral functions suffer considerable bias. For 

example, inspecting the cross- covariance function 
between the filtered urbanization and fertility 
series it was found that urbanization lagged fer- 
tility by four years. Accordingly the filtered 
urbanization series was transformed by 

(11) 
** * 

ut ut-4 

and all spectral and cross - ectral functions were 
estimated for the series {u and {f,}. Similarly 
the following adjustments of the otheP independent 
series were required 

(12) for unemployment: vt 
= vt_i 

** * 
(13) for Roman Catholic pop.: rt 

= rt -3 

where a single asterik denotes the filtered series 
and a double asterik denotes the filtered, aligned 
series. 

RESULTS 
Using the procedure outlined above a distributed 

lag model between the filtered and aligned series 
was estimated. The partial impulse response func- 

tions were obtained by applying the inverse Fourier 

transformation to the partial frequency response 
functions. The partial impulse response functions 
appear in Table I. 

Model I 

rproblem in constructing a multivariate dis- 

tributed lag model is how to choose the number of 

terms from each partial impulse response function 

to include in the model. One solution to this 
problem involves the inspection of the cross -co- 

variance function between two series. If the 

cross -covariance function drops off rapidly after 
p lags, it is probable that p terms of that impulse 
response function should be included in the model. 

Using this technique it was decided that one 

term of each of the first two partial impulse re- 

sponse functions (urbanization and unemployment) 

and five terms of the third partial impulse re- 
sponse function should be included in the model. 



This resulted in the equation. 

(14) ft = -4.75 ut + .78 - .039 

- 3.92 rt *i + 3.95 rt_2 - .17 

- 1.81 
*4 

Equation 14 will be called Model I. It explains 
only 11 %,of the filtered fertility series sug- 
gesting that this model is rather inadequate. 

Model II 

An alternative method for selecting terms of 
the partial impulse response functions to enter 
the model is a computer search to meet some cri- 
terion. In this case, variance explained by a 
linear projection was maximized. The model con- 
structed in this way is 

(15) ft = -4.75 + .78 - 1.23 
*4 

+ .13 + .45 - .34 vt 

- .039 - 3.92 + 3.95 *2 
- .17 *3 - 1.81 

This model is certainly a better predictor of 
fertility since it explains approximately 39% of 
the variance in the filtered fertility series. 
One method of evaluating the adequacy of this 
model is to compare the original spectrum ofethe 
filtered fertility series to the spectrum of 
the residual series. If the residual series 
were purely random the residual spectrum would 
be essentially flat (Jenkins and Watts, 1968: 
224 -225). Figure I shows that considerable flat- 
tening has occurred even though the residual 
spectrum is not completely flat. 

Notice that equation 15, Model II, is similar 
to Model I in that it has one term of the par- 
tial impulse response function associated with 
the urbanization series and five term of the 
"Roman Catholic population" partial impulse 
response function. However, Model II differs 
significantly from Model I with respect to the 
unemployment coefficients. Terms corresponding 
to lags of zero, four, five, six, and seven 

years enter the mail-. -This is curious 
since the terms of the partial impulse response 
function corresponding to lags of one, two, and 
three years are certainly not zero. 

Is it possible to reconcile this finding? It 

is possible that the secondary delay is due to 
some form of recursion, i.e., unemployment ex- 
erting an influence on fertility indirectly 
through another variable. To check this specu- 
lation the cross -covariance functions between 
the unaligned unemployment series and the other 
two independent series were examined. It was 
found that a very strong relationship existed be- 
tween urbanization and unemployment lagged one 
year. Recall that urbanization required an 
adjustment of four years to achieve proper 
alignment with fertility. These four years to- 
gether with the lag of one year of unemployment 
behind urbanization suggests an indirect effect 
of unemployment on fertility occurring with a 
lag of five years through the intervening vari- 
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able urbanization. This indirect effect occurs 
at approximately the same lag as suggested by the 
structure of equation 15. In other words, a sys- 
tem of the form in Figure II seems to be operative 
here. 

The total effect of unemployment on fertility 
can be found by adding the convolution of the dis- 
tributed lag relating unemployment to urbanization 
and the distributed lag relating urbanization to 
fertility with the direct effect of unemployment 
on fertility. By methods described above it was 
found that the best linear predictor of urbani- 
zation based on unemployment was 

(16) = -.1615 

This, when convoluted with the term of the partial 
impulse response function associated with the 
urbanization series which was included in Model 
II yields an equation which is quite similar to 
Model II. 

(17) 
t 

- 4.75 
t 

- .039 

- .17 *3 

.78 - .768 v 

3.92 + 3.95 rt_2 

- 1.81 

As can also be seen the magnitude of the coeffi- 
cient for the v term is similar to the same 
coefficient in Nadel II. This secondary analysis 
lends support to the above speculation concerning 
the nature of the operative system. 

DISCUSSION 
If we remove the alignment and formulate equa- 

tion 15 in terms of differencing operators we 
obtain 

(18) Aft Aft - 4.75 out 
-4 + 

.78 

- 1.23 Avt_5 + .131 
-6 

+ .45 
-7 

- .039 
-3 

- 3.89 + 7.88 
-5 

- 4.12 Art_6- 1.64 
Art 

+ 1.81 Art -8 

As can be seen the most immediate effects of 
unemployment and urbanization are in the expected 
directions. Urbanization has a strong negative 
effect on fertility change after a lag of four 
years. The initial effect of unemployment on 
changes in fertility is positive and occurs at a 
lag of one year lending support to the opportunity 
cost argument concerning the influence of econo- 
mic change on fertility. The longer term effects 
of unemployment on fertility are decidedly nega- 
tive which suggests that in the long run income 
effects come into play. Perhaps the most confusing 
distributed lag relationship is that between Roman 
Catholic population and fertility. The strongest 
influence is positive and occurs at a lag of five 

years. However, the positive effect is offset 
somewhat by the negative effects at lags of three, 
four, six, and seven years. 



In future papers the analysis performed here 

will be extended in several ways. First, other 

than substantive uses there is a question con- 
cerning possible uses of the types of models 
developed here. It is possible that such models 
could be used for purposes of projection and 

prediction of future trends in fertility on the 
basis of socioeconomic change. This will be 
explored. Second, the present model is being 
extended to include constructed recursive effects. 
In other words, instead of detecting recursion as 
was done in the present work recursive effects 
of variables will be "built in" by the investi- 
gator in theoretically meaningful ways. For 

example, it is thought that urbanization has 

an indirect effect on fertility through its 
influence on health care distribution and that 
variable's subsequent effect on infant mortality. 
This, then, leads,to a reduction in fertility. 

Much work remains to be done in this area. 
The present study is preliminary at best. We 

proceeded by effectively ignoring problems of 
data consistency over time and other methodo- 
logical difficulties. Essentially, we were try- 
ing to answer the question of whether this 
approach can be useful at all in sociology. In- 

asmuch as it provides a new framework (with its 

own theoretical implications) for the analysis 
of data of a form not typically used by sociolo- 
gists, the answer to the question is that the 
method appears useful, but further research may 
serve to qualify this initial response. 
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TABLE I 

Partial impulse response functions for a model of fertility 
based on the filtered, aligned urbanization, unemployment, 

and Roman Catholic population series. 

lags 

urbanization 

partial impulse response functions 

unemployment Roman Catholic 
population 

-4.754 .782 -.039 

1 -3.845 -1.630 -3.929 

2 2.226 .248 3.956 

3 2.620 1.159 -.172 

4 -1.154 -1.236 -1.815 

5 -5.039 .131 1.954 

6 3.321 .453 -1.183 

7 .858 -.340 -1.370 

FigureeII: Original spectrum of'the filtered fertility 

sexes and the residual spectrum derived from Model II. 
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Fei ure II: Relationships among filtered urbanization, 
unemployment, Roman Catholic population, and fertil- 
ity series. 
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